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A B S T R A C T   

The Greater Mahale Ecosystem (GME) in western Tanzania hosts high faunal biodiversity, including charismatic 
species such as elephants and chimpanzees. Across the GME, habitat occurs in differently administered, un-
protected and protected areas, including village land, forest reserves, and national parks. Areas of lower pro-
tective status are prone to deforestation and land cover changes. These land cover changes influence suitable 
habitat itself as well as the connectivity between habitat patches, but the impact on different mammal species in 
this region is unknown. In this study, we investigated changes in habitat availability by creating species dis-
tribution models for 11 medium-large mammal species based on species occurrence data collected from 2008 to 
2020. We tested habitat associations for each species and evaluated the importance of the static predictor var-
iables elevation, slope, aspect and terrain-ruggedness and the dynamic predictor variables distance to defores-
tation, percent forest, vegetation intensity, and vegetation variability, retrieved through remotely sensed data 
analysis. Our models suggest habitat declined for most, but not all species. Whilst elephants and buffalo lost more 
than 50 % of available habitat during this period, primates exhibited habitat stability. Habitat losses were 
pronounced in the southeast of the GME. Slope, elevation and median tasseled-cap wetness index (vegetation 
intensity) and distance to deforestation were the most important predictor variables. Our study presents a 
spatially and temporally explicit estimation of habitat changes in a critically important, biodiverse region un-
dergoing drastic land cover changes. We call for consideration in land-use planning to foster connectivity and 
landscape integrity to protect and conserve wildlife across the ecosystem.   

1. Introduction 

Despite concerted efforts by conservation biologists to improve 
species protection, particularly through the designation of protected 
areas, global biodiversity continues to decline (Ceballos et al., 2017). 
Amongst the drivers for this failure to protect biodiversity are the 
limited effectiveness of protected areas (Gatiso et al., 2022; Riggio et al., 
2019), and a paucity of attempts to halt land cover changes outside of 
protected areas (Beresford et al., 2013). The Kumming-Montreal Global 
Biodiversity Framework of the Convention on Biological Diversity from 
2022 aims to cover at least 30 % of the Earth’s surface with protected 
areas and other effective area-based conservation measures (CBD 2022) 
might be insufficient in protecting wildlife populations (Craigie et al., 
2010) if these increases in protected areas are not paralleled by 

increasing conservation efforts (Leclère et al., 2020) and integrated at 
the landscape scale. This integration requires connectivity between 
protected areas and ensuring wildlife conservation outside of protected 
areas as well (Kiffner et al., 2020). 

In Sub-Saharan Africa, many countries are currently facing 
increasing ecological consequences of anthropogenic activity, such as 
land use and land cover change resulting in deforestation, jeopardising 
wildlife populations through the loss of habitat, increased exposure to 
disease, and poaching (Buchadas et al., 2022; Ramutsindela & Chauke, 
2020). While Tanzania protects a larger proportion of its land than any 
other African country (43.7 %; CBD 2023), there remain areas of con-
servation concern. In southwest Tanzania, for example, agricultural 
land, settlements, and infrastructure have increased by 300 % over the 
past three decades (Giliba et al., 2022). These land cover changes 
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bordering protected areas have implications for wildlife movement, 
namely in limiting gene flow between sub-populations, and thus may 
threaten population viability (Ceballos et al., 2017). Tanzania is home to 
some of the most charismatic and well-known places for wildlife con-
servation on the continent (e.g., Serengeti National Park, Ngorongoro 
Crater Conservation Area) and hosts globally important biodiversity 
areas (Burgess et al., 2007). While most attention has centred in the 
north and east of the country (ibid), the western region likewise is a 
critical landscape for wildlife conservation of umbrella species like 
chimpanzees (Pan troglodytes schweinfurthii) (Bonnin et al., 2020; Car-
valho et al., 2022) and elephants (Loxodonta africana) (Kwaslema et al., 
2017; Riggio & Caro, 2017). 

Western Tanzanian wildlife and its habitat face multiple anthropo-
genic threats, namely in the form of habitat conversion to agriculture 
(Caro, 2008; Giliba et al., 2022), but also in some cases, targeted killings 
of specific species (e.g., lion - Borgerhoff Mulder et al., 2019). This has 
led to declines of mammal species of various sizes, from (large) buffalo, 
giraffe (Giliba et al., 2022) and chimpanzees (Carvalho et al., 2022) to 
(medium-sized) duiker and warthog (Caro, 2008). To date, most con-
servation work has been conducted in national parks that host intact 
habitats and formal, if modest, government presence in the form of 
ranger patrols and enforced boundaries. The western region, especially 
the ~ 18,000 km2 Greater Mahale Ecosystem (GME), is characterised by 
a mosaic of formally protected (e.g., national parks and village and 

district forest reserves) as well as unprotected lands that combine to 
provide corridor habitat between two national parks, Mahale Mountains 
National Park (MMNP) in the West and Katavi National Park in the 
South (Fig. 1). In addition to chimpanzees and elephants, the GME hosts 
diverse mammalian wildlife including lions, hyenas, wild dogs, sable 
antelope, and eland, amongst others (Piel et al., 2019). The importance 
of the GME lies not just in its geographic location – serving as a historical 
corridor between Mahale and Katavi National Parks (Riggio & Caro, 
2017) - but also in the relatively low human population density. As such, 
it serves as an under-studied and valuable system that hosts important 
umbrella mammalian species as well as large tracts of suitable habitat 
for various wildlife species (Bonnin et al., 2020). 

Historically, conservation efforts across western Tanzania have 
focused on chimpanzees, and especially those around Gombe National 
Park. These studies have focused specifically on unpacking the inter-
action between disease and health in Gombe chimpanzees (Keele et al., 
2009; Pusey et al., 2008), the role of domestic animals in pathogen 
transmission (Parsons et al., 2014) and the establishment of corridors 
to/from Gombe to maintain gene flow (Wilson et al., 2020). Broader, 
ecosystem-wide conservation efforts have recently focused on drivers of 
deforestation (Kessy et al., 2016), chimpanzee habitat connectivity 
(Bonnin et al., 2020), and evaluating programs on reducing emissions 
from deforestation and degradation (“REDD”) as an effective tool to 
protect critical habitats outside of MMNP (Dickson et al., 2020; Nzunda, 

Fig. 1. Location of the Greater Mahale Ecoregion in Western Tanzania with species observation records, national parks (retrieved from the World Database on 
Protected Areas) and forest extent (2008) and forest loss (2008–2021) (retrieved from GFC data by Hansen et al., 2013). 

S. Thomsen et al.                                                                                                                                                                                                                                



Journal for Nature Conservation xxx (xxxx) xxx

3

2021). Whilst there are multiple international organisations involved in 
local conservation initiatives (e.g., village land use planning), the am-
bitions and results of these activities are not always easily accessible by 
the people involved in or affected by the planning and implementation 
of these conservation interventions (Manumbu, 2020), which may in-
fluence how conservation actions are coordinated and, ultimately, 
implemented. To inform such endeavours, there remains a need for 
science-driven wildlife conservation strategies throughout Tanzania 
(Caro & Davenport, 2016), and especially in the GME where there is a 
paucity of data on wildlife distribution (McLester et al., 2019 for cer-
cipithecoid primates and Carvalho et al., 2022 for chimpanzees). In 
response to that data gap, we built species distribution models (SDM) of 
eleven different mammal species in the GME based on survey data be-
tween 2008 and 2020 to better understand spatio-temporal patterns of 
wildlife observations, and to explore whether these patterns relate to 
environmental and anthropogenic changes over time. 

Species distribution modelling aims to understand the suitable 
habitat of a species based on spatially explicit environmental parame-
ters. Due to its ability to visualise past, present, and future habitat, it is a 
powerful instrument in conservation planning (McShea, 2014) and has 
gained popularity in ecological modelling over the past decades 
(Mammola et al., 2021). Remote sensing data can be used to extract 
environmental drivers related to vegetation condition, vegetation het-
erogeneity, and human impact (Bellis et al., 2008; Devictor et al., 2008; 
Santos et al., 2016). Moreover, remote sensing data are measured in 
fixed frequencies, allowing for temporal repetition of SDMs with the 
same predictor variables (Leitão & Santos, 2019). Cloud-based platforms 
like Google Earth Engine (GEE) (Gorelick et al., 2017) facilitate the 
acquisition and processing of remote sensing data and enable users to 
carry out data computation-intensive tasks without the necessary 
hardware infrastructure (Tamiminia et al., 2020). Giliba et al. (2022) 
investigated habitat associations for several large mammalian species in 
western Tanzania in the face of land cover change yet did not quantify 
habitat loss for specific species. In the GME, Bonnin et al. (2020) and 
Dickson et al. (2020) have studied habitat changes of chimpanzees with 
the help of SDMs. 

The current study aims to expand previous analyses of habitat 
change for a single species (chimpanzees) to other sympatric and com-
mon mammalian species across the entire GME. Specifically, we asked 
(i) how habitat availability for different mammalian species changes 
over time, and (ii) which environmental and anthropogenic variables 
influenced habitat availability? Based on recent findings on chimpanzee 
abundance (Carvalho et al., 2022) and from large mammalian assem-
blages in the nearby Katavi-Rukwa landscape, we hypothesised that (1) 
ecologically restricted species (e.g., red colobus, red-tailed monkeys) 
would suffer the most habitat loss, whereas generalist species (e.g., 
bushpig, baboon) would be the least affected, losing the least amount of 
habitat and (2) environmental predictors related to anthropogenic 
changes would have large, negative impacts across species. 

2. Methods 

2.1. Study area 

The study area is the GME located in western Tanzania and com-
prises 17,564 km2. It stretches from Lake Tanganyika in the west to the 
Ugalla river in the east and from the Malagarasi river in the north to 
Katavi National Park in the south (Fig. 1). The region is dominated by 
dry season deciduous miombo woodland, interspersed with evergreen 
forest (including montane evergreen forest in Mahale Mountains, here-
after called ‘riparian forest’ for simplicity) and patches of grassland, 
bamboo woodlands, and rocky outcrops. Elevation in MMNP ranges 
from 767 m on the lake shore to the highest peak of 2480 m, whilst in 
other parts of the GME elevation ranges from 1100 to 1700 m. Western 
Tanzania exhibits pronounced seasonality, with nearly all precipitation 
occurring from November to April. Average annual precipitation is 

around 1800 mm and temperatures range from 18 to 32 ◦C (Dickson 
et al., 2020). The GME has experienced considerable land cover changes 
over the past decades, mostly connected to the loss of miombo woodland 
for agricultural expansion (Bonnin et al., 2020). The Global Forest 
Change (GFC) dataset has revealed a constant loss of forest cover in the 
study area between 2008 and 2020, which has resulted in a forest loss of 
over 62,000 ha (Hansen et al., 2013) (~3.5 % of the study area, see 
Supplementary Material (Appendix S1, Table S1.3)). 

2.2. SDM 

2.2.1. Species occurrence data 
We collected species occurrence data during surveys between 2008 

and 2020 (Fig. 1). Survey methods included both line transects and 
reconnaissance walks (see methods described in Carvalho et al., 2022). 
Surveys were carried out in an elevation range between 767 and 2209 m. 
Species occurrences were either directly observed, or indirectly docu-
mented from faeces, nests, prints or feeding remains. We ensured a 
minimum distance of 120 m between points to account for spatial 
autocorrelation (Barbet-Massin et al., 2012). Apart from chimpanzees, 
which have been intensively studied in the GME, we decided to include 
ten other mammalian species in our analysis to compare changes in 
habitat over time. We decided to limit the number of additional inves-
tigated species to ten in order to limit model computation time and 
ensure that results could be adequately compared and interpreted. We 
selected additional species based on occurrence point availability and 
decided to add the most frequently encountered large carnivore (leop-
ards) to diversify the taxonomic groups that were represented. (Table 1, 
all occurrence records can be found in Appendix S1, Table S1.4). We 
created pseudo-absence points within the extent of the study area for 
each species individually and proportionally to the temporal distribu-
tion of the corresponding species occurrence points to overcome sam-
pling bias and problems in the evaluation (Lobo et al., 2008; Senay et al., 
2013). Moreover, we established a minimum distance of 120 m among 
pseudo-absence points and to occurrence points. 

2.2.2. Predictor variables 
To test relations between species occurrences and environmental 

conditions, we used eleven static and dynamic predictor variables 
retrieved through remote sensed data analysis (Table 2). Static variables 
do not change over time while dynamic variables were acquired either 
annually or for 2-year-periods between 2008 and 2020. Static predictor 
variables were elevation, slope, and aspect. Furthermore, we computed 
the terrain ruggedness index (TRI) with a kernel size of 300 m (Jackson 
et al., 2014). Elevation data stems from the Shuttle Radar Topography 
Mission (SRTM) and was acquired via GEE. 

Dynamic predictors included the distance to deforestation and 
percent forest, both derived from the global forest change (GFC) dataset 
by Hansen et al. (2013). Since over 90 % of forest loss in the tropics and 
also in Tanzania are driven by agricultural expansion (Pendrill et al., 
2022), we assumed that forest loss in the study area is linked to agri-
cultural expansion. Other important drivers for forest loss is charcoal 
production, which is also linked to expansion of anthropogenic activities 
(Doggart et al., 2020). Detailed information on the computation of 
distance to deforestation and percent forest in GEE can be found in 
Appendix S1. 

Other dynamic predictor variables stem directly from Landsat sat-
ellite data and aim to represent different land cover and forest types. We 
used the tasselled-cap wetness (TCW) index (Crist & Cicone, 1984), 
which works particularly well to capture structural differences in 
vegetation type (Pflugmacher et al., 2012). Therefore, we used TCW in 
this study to account for different vegetation type preferences of 
investigated species (e.g., grasslands, miombo woodland or riparian 
forests). Based on the TCW, we computed several rasters to depict 
vegetation intensity (TCW median and TCW max) and vegetation vari-
ability (TCW 3 ha, TCW 9 ha, TCW 100 ha). Ecological implications and 
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proxies of the variables are explained in Table 2. A detailed description 
of calculation and parameters used can be found in Appendix S1. 

All data have a native resolution of 30 m and were aggregated to 60 
m by mean values in Google Earth Engine before downloading to 

facilitate faster processing. 

2.2.3. Habitat suitability modelling 
To illustrate the dynamics of suitable habitats for the selected 

mammalian species in the study area, we computed SDMs for each 
species, resulting in eleven different models. Before modelling, we 
extracted the corresponding pixel values of all predictor variables, 
thereby ensuring that in case of dynamic variables extracted values 
corresponded to the same time frame when species occurrence was 
observed (Crego et al., 2022). For example, if a species’ presence is 
observed in 2008, the TCW median value is extracted for the same year. 
Hence, a single model was built for each species based on data collected 
across 13 years (2008–2020), assuming that habitat preferences remain 
constant, while environmental conditions can change. We included an 
equal amount of presence and pseudo-absence points in our models 
(Table 1), where pseudo-absence points separated by 120 m were 
created randomly in the study area. We generated an amount of pseudo- 
absence points per year which was proportional to the amount of pres-
ence points, thus avoiding a temporal mismatch in the temporal repre-
sentation of presence and pseudo-absence points. Based on the data 
contained in these points, we calculated the variable inflation factor for 
the predictor variables species-wise and excluded those with a value 
higher than three (Zuur et al., 2010). 

After the selection of presence and pseudo-absence points, we 
randomly selected a third of the points for model validation and applied 
the other two-thirds for the subsequent modelling process. The model-
ling was performed with the sdm package (Naimi & Araújo, 2016) in R 
(R version 4.0.4, https://www.R-project.org/). For this, we used 
Random Forest, Boosted Regression Trees and Support Vector Machine 
algorithms. We employed an ensemble modelling strategy with the three 
algorithms in order to improve predictions and decrease the uncertainty 
of results (Araujo & New, 2007; Marmion et al., 2009). Detailed infor-
mation on the modelling parameters can be found in the Appendix S1. 
We replicated 10 models per algorithm. For evaluation of model per-
formance, we calculated the Area Under the Curve (AUC) and selected 
the three best performing models per algorithm for the final ensemble. 
As a further performance indicator, we also computed the True Skill 
Statistics (TSS) (Allouche et al., 2006). Models were applied to predict 
the habitat suitability in the study area for two time frames (2008 and 
2020) to quantify the changes in habitat over the study period. After-
wards, we averaged the predictions for each algorithm to obtain a single 

Table 1 
Overview of the species examined in this study, including their preferred habitats and species-specific modelling information.  

Scientific name Common 
name 

Habitat 
preferences* 

Presence points for 
modeling** 

Mean 
AUC 

SD 
AUC 

Mean 
TSS 

SD 
TSS 

Variables used for 
modelling 

Most important 
variable 

Papio sp. Baboon Savanna- 
woodland 

419  0.736  0.012  0.385  0.027 9 Elevation 

Philantomba 
monticola 

Blue Duiker Tropical forest 570  0.843  0.015  0.558  0.029 8 Elevation 

Syncerus caffer Buffalo Grassland/ 
Swamp 

435  0.820  0.008  0.537  0.022 8 Distance to 
deforestation 

Tragelaphus 
scriptus 

Bushbuck Generalist 1000  0.736  0.008  0.389  0.019 8 TCW median 

Potamochoerus 
larvatus 

Bushpig Generalist 1000  0.698  0.007  0.317  0.023 8 TCW median 

Pan troglodytes Chimpanzee Generalist 1000  0.846  0.003  0.554  0.011 8 Slope 
Loxodonta africana Elephant Savanna- 

woodland 
397  0.895  0.011  0.654  0.020 8 TCW median 

Panthera pardus Leopard Generalist 112  0.829  0.018  0.580  0.038 8 TCW 3 ha 
Piliocolobus 

tephrosceles 
Red Colobus Tropical forest 207  0.862  0.014  0.654  0.058 8 TCW median 

Cercopithecus 
ascanius 

Red Tailed 
Monkey 

Tropical forest 225  0.914  0.008  0.703  0.024 8 TCW median 

Hippotragus 
equinus 

Roan Antelope Savanna- 
woodland 

1000  0.721  0.011  0.339  0.027 8 Distance to 
deforestation 

* Kingdon (2015) 
** Limited to a maximum of 1000 points due to computation capacities. We selected points randomly. 

Table 2 
Predictor variables used for the species distribution models in this study.  

No Predictor Static/ 
Dynamic 

Ecological implication 

1 Elevation Static Serves as a proxy for climate, as 
many climatic variables in the study 
area can be explained by variability 
in elevation. 

2 Slope Static Characterizes terrain preferences of 
species 

3 Aspect Static Characterizes terrain and 
vegetation preferences of species, 
as orientation of slope can have 
implication on vegetation type 

4 Terrain-Ruggedness- 
Index (TRI) 

Static Characterizes species preference for 
terrain heterogeneity 

5 Distance to 
deforestation 

Dynamic 
(each year) 

Serves as a proxy for anthropogenic 
disturbance and species’ tolerance 
towards these 

6 Percent forest Dynamic 
(each year) 

Characterizes species habitat 
preference for vegetation 
heterogeneity 

7 Vegetation intensity 
(TCW median) 

Dynamic 
(two-year) 

Serves as a proxy for land cover, as 
TCW median values depicts well the 
vegetation intensity differences 
between riparian forest, miombo 
woodland, grasslands, and non- 
vegetated surfaces. 

8 Vegetation variability 
3 ha (TCW 3 ha) 

Dynamic 
(two-year) 

Characterizes species habitat 
preference for vegetation 
heterogeneity (small spatial scale) 

9 Vegetation variability 
9 ha (TCW 9 ha) 

Dynamic 
(two-year) 

Characterizes species habitat 
preference for vegetation 
heterogeneity (medium spatial 
scale) 

10 Vegetation variability 
100 ha (TCW 100 ha) 

Dynamic 
(two-year) 

Characterizes species habitat 
preference for vegetation 
heterogeneity (large spatial scale) 

11 Maximum vegetation 
intensity (TCW max) 

Dynamic 
(two-year) 

Characterizes the proximity to high 
TCW values, which serves as a 
proxy for proximity to riparian 
forests and hence rivers  
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raster layer as a prediction output per algorithm and time frame. To 
convert continuous values in the prediction raster into binary classifi-
cations, we derived the threshold value by maximising the sum of 
specificity and sensitivity for each predicted model run and applied the 
averaged value for reclassification (Liu et al., 2016). We added the bi-
nary prediction raster of the three algorithms to investigate where the 
predictions of the different modelling algorithms agree. A pixel was 
considered a final prediction if at least two algorithms agreed on the 
binary classification of habitat suitability. This resulted in a binary 
suitable / unsuitable raster for each time frame (2008 and 2020) from 
which we quantified the temporal differences in habitat for each species. 

3. Results 

Species distribution models ranged in their performance based on 
AUC (Table 1). The distribution model for red colobus monkeys pre-
sented the highest model predictability with an average AUC value of 
0.914 (mean TSS 0.703) across all modelling methods and selected runs 
for prediction. Alternatively, the SDM for bushpig yielded the lowest 
average AUC of 0.698 (mean TSS 0.317). The largest variation of AUC 
values was observed for leopard models (standard deviation of AUC 
values 0.018). We found no relationship between the number of points 
used in the given model and the respective AUC, but SDMs with fewer 
points presented a larger standard deviation of AUC values. Mean TSS 
values are proportional to mean AUC values. 

In all cases, collinearity among predictor variables was detected and 
hence reduced. Removed variables included the TRI and TCW 9 ha. The 
variable TCW max was only considered for the baboon SDM, resulting in 
a total of eight (nine for baboons) variables used (Table 1). Variable 
importance indicates the dependency of a SDM on a particular variable. 
Low values implicate high correlation of model results if the variable 
was excluded from modelling, high values implicate lower correlation in 
case of variable exclusion. It does not necessarily imply a positive or 
negative correlation of the variable with a species’ presence. For our 
case study, we can observe that the most important variables for the 
different SDMs are diverse and include static (e.g., slope or elevation) 
and dynamic (e.g., TCW median, distance to deforestation) variables 

(Table 1). In one case (leopard), vegetation heterogeneity (TCW 3 ha) 
emerged as the most important variable. More detailed information on 
variable importance in the models can be found in Appendix S1, 
Table S1.2. 

In most cases, we found a decline in suitable habitats between 2008 
and 2020 (Fig. 2). This habitat loss was especially prominent for buf-
faloes and elephants, with both having lost more than 50 % of their 
habitat over this period. However, not all species lost suitable areas to 
this extent. Chimpanzee and red colobus monkeys gained habitat, if only 
modestly (chimpanzee 0.63 % gain; red colobus 3.55 % gain). Fig. 3 
depicts the dynamics of the predicted habitat for two exemplary species 
(chimpanzee and elephant). Only small and spatially peripheral areas 
were predicted as habitat loss for chimpanzees and stable habitat area 
models even predicted habitat gain. In contrast to this, we predicted 
habitat loss for elephants to have occurred in large patches over the 
study area, resulting in a total loss of 3,479 km2 (51.73 % of the initial 
habitat). Loss of habitat was especially severe in the southeast of the 
study area (Fig. 3). 

4. Discussion 

4.1. Interpretation of modelled habitat change and variable importance 

We computed SDMs for 11 different medium-large mammal species 
in western Tanzania based on occurrence data from 2008 to 2020 and 
predicted the suitable habitat area for several years to assess to what 
extent different species in the GME have experienced changes in avail-
able habitat area. Our models indicated that habitat decreased by more 
than 5 % for eight of the eleven investigated species. However, habitat 
loss varied greatly among the species and taxonomic groups. 

Contrary to our first hypothesis, that ecologically restricted species 
would exhibit more modelled habitat loss, our models predicted little 
impact of land cover changes in the study area on primates between 
2008 and 2020. SDM predictions for chimpanzee, red-tailed monkey and 
red colobus do not show substantial differences in predicted habitat, 
while SDM predictions for baboon suggest an 18.9 % decline in habitat 
area. The stability of primate habitat is surprising, as land cover change 

Fig. 2. Difference of predicted suitable habitat area between 2008 and 2020 displayed for all modelled species.  
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was observed to affect chimpanzee habitat negatively in the GME during 
early survey work (Piel & Stewart, 2014). The most important variable 
for the chimpanzee SDMs was slope, which has also been described by 
Bonnin et al. (2020) and Dickson et al. (2020). The second most 
important variable was TCW median (Appendix S1, Table S1.2). The 
importance of both variables for the chimpanzee SDM can be explained 
by our use of chimpanzee nests as a key data source. Chimpanzees tend 
to build their nests on high slopes (Hernandez-Aguilar, 2009; Ogawa 
et al., 2014). Our use of slope as a static variable for modelling and the 
fact that it appeared as the most important variable may explain why our 
modelling results do not detect substantial changes in habitat avail-
ability. Moreover, terrain with steeper slope is often less affected by 
deforestation (Ferrer Velasco et al., 2020). In the study area, we 
observed that riparian forests, which are characterised by high TCW 
values, have been less affected by land cover change than miombo 
woodland, though only by a relative difference of 0.53 % (see Appendix 
S1, Table S1.3). This is another explanation for no predicted substantial 
habitat decline for chimpanzees. Our use of chimpanzee nest locations as 
occurrence points in the model could potentially have generated a bias 
towards areas for preferred nesting (marked by slope and higher 
elevation) and under-estimated areas used for feeding and travelling 
(Bonnin et al., 2020; Giuliano et al., 2022). Like chimpanzees, red-tailed 
monkeys and red colobus also exhibited habitat stability, showing either 
a slight increase or decrease in predicted habitat change (<5 % change). 
Variability in the predicted habitat change among the different species 
can stem from model sensitivity to small variability in TCW values as a 
consequence of differences in rainfall and wetness over the time periods. 
Red-tailed monkey and red colobus are both found primarily in ever-
green forests (Linder et al., 2021), which have been less affected by 
forest loss in the GME. Hence, the variables that contributed most to the 
SDM in both cases were TCW median and vegetation heterogeneity (see 
Appendix S1, Table S1.2 and Figure S1.1). 

In contrast to other primates, our SDM for baboons showed habitat 
associations with a heterogeneous landscape. Baboons are known as an 
extremely adaptive taxon, living in tropical forests, desert savannas, and 
within urban settlements (Fischer et al., 2019). Of all the species 
examined in our study, we expected them to experience the broadest 
distribution and thus the least likelihood to experience habitat loss. 
Although elevation was the most important variable, TCW 100 ha was 
the second most important variable (see Appendix S1, Table S1.2). 
Moreover, distance to deforestation was also important in predicting 
their distribution, indicating the group did not respond well to distur-
bance (see Appendix S1, Figure S1.1). These results are contrary to what 
is broadly known about baboons, e.g., that they are resilient to land 
cover change and adapt well to anthropogenic activity (Hill, 2000). 
Whilst it is assumed that kinda baboons (P. kindae), which characterise 
the region, behave similarly to their sister taxons – yellow baboon 
(P. cynocephalus) and olive baboon (P. anubis) – it could be that this 
species is less resilient to disturbance than expected. Alternatively, there 
could be a sampling bias in our data, with areas further from human 
activities being over-sampled. It is the case that whilst base stations were 
often situated in villages, transects never reached within the village 
boundaries. Sampling in more disturbed areas might have revealed 
greater baboon evidence. Regardless, this example illustrates the 
importance of adequate variable selection for SDMs, as it has been 
shown that non-meaningful environmental data can appear as relevant 
for SDMs and even outperform meaningful data based on evaluation 
metrics (Fourcade et al., 2018). 

For the ungulates that we assessed, blue duiker showed the lowest 
decline in habitat area (Fig. 2), with elevation and TCW median being 
the two most important variables. The largest decline was seen in roan 
antelope and buffalo habitat. SDMs for both species were driven by 
distance to deforestation and suggested a positive relationship between 
this variable and species occurrence, i.e., they were sensitive to 

Fig. 3. Suitable habitat changes between 2008 and 2020. The left map (a) shows chimpanzees, the right map (b) shows elephants.  
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disturbance. Roan antelope have experienced a population decline 
throughout Tanzania due to poaching and disease transmission from 
livestock (Havemann et al., 2016), which could explain their sensitivity 
to disturbance and human presence in the GME. Elephants exhibited a 
similar pattern, though here values for TCW median and distance to 
deforestation were both high, which was also reflected in the variable 
importance in the SDMs (see Appendix S1, Figure S1.1). This implies 
that observed presence points for elephants showed substantially higher 
TCW median values than the respective pseudo absence points, under-
lying elephant’s habitat preference of woody vegetation in this case. In 
relation to this, elephants experienced the largest habitat decline of all 
species (51.73 %), consistent with patterns described above for other 
large species, e.g., roan antelope (37.83 %) and buffalo (50.12 %), which 
were also driven by distance to deforestation and present habitat 
decline. Besides variable distance to deforestation, the TCW median was 
more important than distance to deforestation for elephant presence. 
Generally, we observed that species for which models exhibit a larger 
amount of habitat loss are often driven by the variable distance to 
deforestation, which reflects the dynamics of anthropogenic impacts in 
the study area. Thus, we can confirm our second hypothesis, that envi-
ronmental variables related to anthropogenic changes would have a 
substantial impact on projected habitat changes. 

In an earlier study from Katavi National Park, adjacent to the GME, 
buffalos and elephants were found to prefer the centre of the protected 
area compared to the adjacent, unprotected land (Kiffner et al., 2013), 
presumably for safety against e.g., human activities like poaching or 
settlement expansion. More recently, and in areas southeast of Katavi, 
Giliba et al. (2022) also found that distance to cropland was a significant 
predictor for the presence of elephant, buffalo, and four other ungulate 
species (giraffe - Giraffa camelopardalis, hartebeest - Alcelaphus busela-
phus, topi - Damaliscus korrigum and zebra - Equus burchellii). Besides 
investigating the habitat association of selected species, Giliba et al. 
(2022) also analysed temporal trends in wildlife population density 
between 1991 and 2018, finding that buffalo especially experienced a 
decline over the past decades. Although our study focuses on the tem-
poral dynamics of wildlife habitat, both studies show that suitable 
habitat for large mammal species has declined in western Tanzania over 
the past years. Deforestation is largely attributable to settlement 
expansion, agriculture and charcoal production – all well-established 
threats to forests across East Africa (Doggart et al., 2020). In a much 
earlier study, Caro (2008) implicated poaching as a probable reason for 
population decline in areas around Katavi. While we cannot account for 
poaching and its impact on wildlife populations in our SDMs, we account 
partly for poaching risk by including distance to deforestation as a 
variable, assuming that risk for poaching increases with proximity to 
human settlements (Smith, 2008). 

4.2. Limitations 

A source of uncertainty and a limitation to this study were occur-
rence and environmental predictor data. In this study, we included 
distance to deforestation as an environmental variable to account for 
habitat quality decline as a consequence of land cover change (e.g., 
agriculture, charcoal production). Future work may benefit from ana-
lyses with greater resolution of the diversity of ways disturbance may 
manifest, for example, by assessing remaining habitat patch area or 
isolation (Haddad et al., 2015). Specifically, the inclusion of high- 
resolution population data as a predictor variable could reveal more 
detailed insights on species’ tolerance towards gradients of human 
coexistence. The same applies for a detailed dataset on man-made 
infrastructure in the study area and its temporal evolution. Further-
more, the inclusion of these variables may inform on the impact of land 
cover change on habitat connectivity, known to be critical for especially 
wide-ranging species like elephants (Graham et al., 2009; Green et al., 
2018) and chimpanzees (Bonnin et al., 2020). Especially for habitat 
specialists (e.g., blue duiker, colobus monkeys), remaining habitat 

patches are often linear features along riparian forest. This implies that 
small land cover changes within narrow areas of intact habitat can result 
in disproportionate impacts for habitat connectivity. Thus, even modest 
land cover changes can result in disproportionate impact on habitat 
connectivity and thus population viability. In this study, the TCW index 
was used as a proxy for vegetation cover and land cover, as it has proven 
to discriminate well between different vegetation types. Nevertheless, a 
vegetation index can be subject to variability over time as a consequence 
of variability in precipitation, which can result in a prediction of more 
suitable habitat. We do not think that this effect has influenced our 
overarching result and trends in habitat change substantially though. To 
overcome this problem, availability of classified land cover data with a 
constant spatial and temporal resolution would be beneficial. 

During the collection of wildlife data between 2008 and 2020, in-
direct observations comprised the majority of the dataset (for example, 
faeces, prints, or chimpanzee nests). While we are confident that pre- 
survey training and consistency within researcher teams across survey 
sites allowed for accurate species attribution, we acknowledge the 
possibility for misclassification. We are unable to calculate what this 
error margin may be. A further challenge was the need to create pseudo- 
absence points, which we did by creating randomly located points. This 
method can lead to biased outcomes depending on sampling effort 
(Guillera-Arroita et al., 2015). Botella et al. (2020) proposed using 
presence data of other species as absence points when multiple species 
are modelled. However, this was problematic in our case since occur-
rence data were captured during transect and reconnaissance walks. 
Concluding that the presence of a particular wildlife species at a 
particular point in time implies the absence of other wildlife species can 
therefore be misleading, since a permanent absence of the species is not 
confirmed (MacKenzie, 2005), as opposed to other species detection 
methods, like camera traps. Therefore, we used pseudo-absence points 
for our SDMs despite the known drawbacks. 

5. Conclusion 

Our study revealed a species-specific pattern to changes in suitable 
habitat across western Tanzania over a 12-year period. We found habitat 
decline for elephant, buffalo, and roan antelope, whereas primate 
(except baboons) habitat experienced minimal changes. These mixed 
results present challenges to conservation planners and emphasise the 
need to investigate habitat loss from a species-specific perspective. 

Our approach to building species distribution models over time and 
combining them with environmental and anthropogenic variables offers 
multiple benefits. First, results inform on the impacts caused by land 
cover changes, specifically how animals respond to habitat loss by e.g., 
shifting ranges to maximise remaining habitat or minimising interspe-
cific competition caused by resource reduction. Relatedly, results also 
inform conservation strategies. In the case of the GME, we recommend a 
nuanced view for establishing habitat connectivity for species with 
different environmental associations. For example, mitigating threats to 
chimpanzee habitat loss will involve conserving key resources found in 
riparian forests, which provide important wet-season food sources. In 
contrast, grassland-preferring buffalo rarely use riparian forests and 
instead require protection of more open habitat. In summary, evidence- 
based and taxonomic-specific wildlife management policies will be key 
for the future health of Tanzania’s wildlife habitat, abundance, and 
distribution. 

6. Research data for this article 

Research data for this article can be requested from the author. 
Predictor variables can be accessed directly through Google Earth En-
gine (https://code.earthengine.google.com/). Wildlife data are avail-
able upon request. Sharing wildlife locations publicly risks revealing 
concentrations of potentially vulnerable species to poaching. 
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